
ftD-RIS9 746 HIGH SPEED TRANSCENDENTAL ELEMENTARY FUNCTIONI

TECH NRIGHT-PATTERSON APS OH SCHOOL OF ENGI.
W.ILRSSIFIED N J BRILEY DEC 8? RFIT/GE/ENG/B7D-3 F/O 12/1 MI.

mhhmomohhhmhhlo

(A
0

is

I~.

S

-N..'.
.5

~.
.5 .p~ ~

a, .,

d Pb S
fr.

SN.
111ff i-P I!~ W
1 IIII~ ISO 3315 L

7 0
IL a1*1 ~ h

5%.-..u~ iitii~
-~ L~

III,. _____ lilIlin 5..~ '0. -.

""'10 ~
5. ~ ', %

I. IIIII~5
___ 1Uil16 0lIIii - Iwim
____ ~~~'., -V

~

0

U."

5 M.C. S

S
-5

~5. %*P

S. ~ S -

~

' S.'..

w w - w - - - - 0
4 ~

0 _

NN

OF%

Cot
DTI

Ad" .LCTE

DEPARTMENT OF THE AIR FORCE - :

AIR UNIVERSITY
AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio .

DI O -D0 A

Appc. fo2 ulc>ea 83 0 2

D~triut~c Unlmfte

AFIT/GE/ENG/87D-3

.o.

HIGH SPEED TRANSCENDENTAL O
ELEMENTARY FUNCTION ARCHITECTURE C;

IN SUPPORT OF
THE VECTOR WAVE EQUATION (VWE) V-

THESIS 0
:* %

Mickey J. Bailey

Captain, USAF

AFIT/GE/ENG/87D-3

bS

Approved for public release; distribution unlimited DTIC
MA0 2 1988
S~HCT .-0-4,.

0

AFIT/GEAENG/87D-3

HIGH SPEED TRANSCENDENTAL
ELEMENTARY FUNCTION ARCHITECTURE

IN SUPPORT OF
THE VECTOR WAVE EQUATION (VWE)

0

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology

Air University 0
in Partial Fulfillment of the

Requirements for the Degree of
Master of Science in Electrical Engineering

Mickey J. Bailey, B.S.
Captain, USAF

December 1987

Approved for public release; distribution unlimited,.

I %.or -

-, .. /I. .". '

Preface

This research is part of the continuing development effort from the Vector Wave Equa-

tion (VWE) Research Group. The initial effort of this thesis was to find high speed architec-

tures for the sine, cosine, and reciprocal functions required to implement the VWE processor.

One of the methods found for computing sine and cosine led me in a direction different

from the original intent of the research. The method was the expansion in Chebyshev poly-

nomials. The convergence of the Chebyshev polynomials is very good, requiring very few

iterations to approximate the required functions. The hardware to compute the Chebyshev ,"

polynomials can be pipelined and would be very fast. The research at this point turned to

developing a Chebyshev processor for the high speed computation of certain transcendental

elementary functions.

I would like to thank my thesis advisor, Major J. DeGroat for his help during this thesis

effort. I would also like to thank my wife and sons for their support throughout the Master's ,.,.

Degree program.

Mickey J. Bailey

"'V

Accession For

NTIS GIRA&I

DTIC TAB
Unannouncod [1-,Justificstion P

By_

Av :i~tPilltv Cudos

ii DSpIa-'

o o* ,--

Table of Contents

Page

P reface .. ii

List of Figures ... v

List of Tables ... vi

A b stract .. v ii

1. Introduction .. 1-1

Vector W ave Equation Background .. 1-2

Chebyshev Processor Background 1-4
Problem 1-5
Scope1-5
Organization 1-6 .9

I. Elementary Functions for VW E Processor ... 2-1

CORDIC Algorithm ... 2-1.
Chebyshev M ethod ... 2-10

I1. Expansion of Chebyshev Polynomials .. 3-1

Sine and Cosine ... 3-3 ,

Tangent ... 3-8
Arctangent .. 3-13
Exponential ... 3-16 .

Natural Logarithm ... 3-19

IV. Analysis of Chebyshev and VWE Processors 4-1

State of the Art Hardware Units .. 4-1

Chebyshev Processor Analysis .. 4-2

Unified Pipeline for Preprocessor .. 4-3 . _
Vector W ave Equation Processor ... 4-4

V. Conclusions and Recommendations .. 5-1

Conclusions .. 5
Recommendations .. .5-2

Appendix: Listing of Computer Programs .. A-I

iii• .

.* ' .. 4,

,.. ." ," . -",.':, .'.. ,- .'/.':...,.:I:-x.: ,::.: 3 ;". : "4"-- -, ,._.: < .- , 4,". ., ,". ""."-, .:,'"",". ""-"-,. ,"-",-":,:: ;

Page

Bibliography ... BIB-

V i t a ...

V it a - I

. -

41

.
4.

0

Of 4 a

F,

av% -.

%

%. I
%.

b -
t

% % % %

List of Figunn %

Figure Page

2.1. Sign of Sine and Cosine 2-5

2.2. CORDIC Hardware for Sine and Cosine 2-8

2.3. CORDIC Division Hardware.. 2-11

2.4. Single Stage of Chebyshev Processor ... 2-17

2.5. Cbebyshev Processor Pipeline .. 2-19

2.8. Preprocessing for Sine and Cosine.. 2-20

3.1. Single Stage of Chebyshev Processr as a Function of x 3-2

3.2. Chebysbev Processor as a Function of x ... 3-7

3. . re ro es in f r an en ... 3 1

3.3. Preprocessing for ArTangent .. 3-12

3.5. Preprocessing for Exponential .. 3-20

3.6. Preprocessing for Natural Logarithm .. 3-24%

4.1. U~nified Preprocessor Pipeline.. 4-5
P -

List of Tableis
Table Page

2.1. Constants for Chebyshev Sine and Cosine .. 2-13

3.1. Constants for Chebyshev Sine and Cosine as a Function of x 3-6

3.2. Constants for Chebyshev Tangent Function... 3-8

3.3. Constants for Cbebysbev Cotangent Function.. 3-10

3.4. Constants for Chebysbev Archtangent Function...................................... 3-13

3.5. Constants for Chebysbev Exponential Function 3-16

3.8. Constants for Cbebysbev Natural Logarithm Function 3-21

4.1. State of the Art Hardware... 4-1

4.2. Number of Iterations for Chebyshev Processor 4-2

4.3. Constants for Static Preprocessor Pipeline... 4-4

6 %

SU

%,, ~

%

AA

Ptsezi

AFIT/GE/ENG/87D-3

Abstract N

In support of a Very High Speed Integrated Circuit (VHSIC) class processor for compu-

tation of a set of equations known as the Vector Wave Equations (VWE), certain elementary

fuctions including sine, cosine, and division are required. These elementary functions are the

bottlenecks in the VWE processor. Floating point multipliers and adders comprise the

remainder of the pipeline stages in the VWE processor.

To speed up the computation of the elementary functions, pipelining within the fune-

tions is considered. To compute sine, cosine, and division, the CORDIC algorithm is

presented. Another method for computation of sine and cosine is the expansion of the Che-

byshev polynominals.

The equations for the CORDIC processor are recursive and the resulting hardware is

very simple, consisting of three adders, three shifters, and lookup table for some of the

coefficients. The shifters replace the multiplies, because in binary, i fight shifts is the same ,

as multiplying by 2i .. '. ."

The expansion of the Chebyshev polynominals can be used to compute other tri-

gonometric functions as well as the exponential and logarithmic functions. The expansion of

the Chebyshev polynominals can be used as a mathematic coprocessor. From these equa-

tions, a pipelined architecture can be realized that results in very fast computation times. The

transformation of these equations as a function of x instead of the Chebyshev polynominals

produces an architecture which requires less hardware, resulting in even faster computation

times.

0
VR

N

HIGH SPEED TRANSCENDENTAL

ELEMENTARY FUNCTION ARCHITECTURE

IN SUPPORT OF THE

VECTOR WAVE EQUATTION(VWE)

I. Introduction

This thesis is the study, development, and analysis of algorithms to compute transcen-

dental elementary functions. The elementary fuctions presented in this thesis include tri-

gonometric, exponential, logarithmic, and division functions. The hardware and computation

times for each of the functions is also presented. ' , .-

Three of the elementary functions - sine, cosine, and division - are needed to solve a set

of equations known as the Vector Wave Equations (VWE). These equations are the basis for -

the VWE Processor, an extremely fast, highly pipelined architecture for computing the VWE. ,

The bottlenecks in the VWE processor are the elementary functions listed above, as very fast

floating point multipliers and adders comprise the remainder of the pipeline stages in the

VWE processor.
. -' *5,

To speed 1.p the computation of the elementary functions, pipelining within the func- .",0
tions is considered. Two methods for computing some of the elementary functions are

CORDIC and expansions of the functions as Chebyshev polynominals. Both of these ,,.

methods are presented in this thesis.

Chebyshev polynominals can be used to compute functions other than those required by _

the Vector Wave Equation. These functions include other trigonometric functions as well as

%1

0" _ ..
) •S

1- 5 5,

.S..-.

the exponential and logarithmic functions. The expansion of the Chebyshev polynominals

can be translated into an architecture for a high speed processor. From these equations, a 0

pipelined architecture can be realized that results in very fast computation times. Manipula-

tion of these equations produces an architecture which requires less hardware, resulting in

even faster computation times. The development of a Chebyshev Processor is also presented

in this thesis.

Vector Wave Equation Background -

In 1984, a thesis topic to find an algorithm which would solve Maxwell's equations for

finding the magnetic (H) and electric (E) fields and vector potential (A) from an antenna •

(current source) was presented. This algorithm would provide the specification for a

hardware design. This design would be optimized to compute the fields and potential in as

little time as possible. Classical methods of computing these fields and vector potential are 0

so time comsuming that only very simple antenna geometries are considered. These equa-

tions require millions of floating point operations, thus resulting in a N-P Complete Problem:

a problem in which the solution is needed before the computer has time to solve it. Jones

(11), Hoyt (7), and Strauss (14) have found solutions to the equations which could result in

tremendous computational savings (orders of magnitude) by proper manipulation of the

VWE.

From basic physics one knows that the effect of radar on an aircraft is that of producing " "
a radar cross section (RCS). A transmitting antenna produces an incident wave on the air-

craft. The RCS is defined as the "area intercepting that amount of power which, when scat-

tered isotropically, produces at the receiver a density which is equal to that scattered by the

actual target (1:65)." The goal was to provide algorithms which could be implemented in

1-2 %.

N V?

* ~*4N

hardware such that an interactive CAD/CAM system could be used to determine the effect a

design would have on the radar cross section. One could determine the fields and vector S

potential in the design phase instead of finding out in the test phase that the airplane's RCS is '- "

unacceptable. At this point, either modifications will have to be made to the aircraft or some

type of absorptive material will have to be applied to the structure. _ _

Jones' contribution to the VWE project was to find an algorithm for computing the vec-

tor potential, A, by solving the radiation integral as approximated by a mid-point summation

(11:6,34). For his thesis, Jones used a simple dipole antenna orientated along the z-axis.

That is, for a simple dipole, the vector potential is accurate to 2 decimal places when the

dipole is broken into 500 sub-elements for the summation. 0

Hoyt was faced with the problem of soving the E and H fields. Hoyt used the same

mid-point summation technique used by Jones to obtain algorithms for these fields using the

same simple dipole along the z-axis (7:7). Algorithms were produced which compute both 0

the real and imaginary parts of the x, y, and z components of the vector potential, electric, and 1'-

magnetic fields. A total of 18 summations, each requiring 500 subelements are required.

Jones found that for M equal to 500 the result from the mid-point summation technique was -

accurate to 2 decimal places. His results were also accurate to 2 decimal places for M equal

to 500.

Now that Jones and Hoyt had provided algorithms for computing A, E, and H, Strauss •

was able to see that many of the intermediate results from computing A, E, and H, if saved,

could be later used in the cartesian coordinte solution of these equations (14). Each field thus ,AfW
consists of an x, y, and z direction in the cartesian coordinate system. Strauss provided a data •

flow chart which is what he termed the "parallel VWE algorithm" (14). He demonstrated that

"a total of 12 computational levels are needed if the architecuture supports 30 floating point

0

1-3

S

.. -.,."

multiplies, 18 floating point additions/subtractions, a square root, sin/cos, and an inverse or

division operation" to produce the 18 components of A, E, and H (14:42).

The data flow chart could be used to implement the VWE in either software or

hardware. The software approach would be to optimize the parallelism inherent in the data

flow chart. This approach was undertaken by Dave Allen for his thesis. The hardware imple-

mentation would result in a pipeline, since Strauss had in effect found the top level pipeline

to solve the VWE. Pipelining is achieved by "subdividing the input task into a sequence of

subtasks, each of which can be executed by a specialized hardware stage that operates con- .

currently with other stages in the pipeline. Successive tasks are streamed into the pipe and 'i,'

get executed in an overlapped fashion at the subtask level" (8:145).

For the hardware implementation, the top level pipeline would need to be broken down

into component pipelines. This is necessary because the slowest element in the pipeline sets

the speed for the rest of the pipeline. Pipelining of the multipliers, adders, and subtractors AC

was not necessary. However, the computation of the sine, cosine, square root, and division

would each require their own internal pipeline so as not to slow down the top level pipeline.

Chebyshev Coprocessor Background

One method considered to compute the sine and cosine was the expansion of these

functions as Chebyshev polynominals. Chebyshev polynominals meet the minmax property

and converge more quickly than other polynominal expansions (5:2). The Chebyshev series

also has "the same convergence properties as those of the Fourier series, but generally with a

much faster rate of convergence" (5:31). The Chebyshev polynominals are recursive, and

would therefore appear to be prime candidates for a pipeline approach, like that of the VWE. 7 =J
1-4

-i'v N~ At
--' -€:

-, - , ,,,, ', ,,, " " .-. . - % . -. ,.,. , .,. ',' ." .,, ,,,,,i, ,-4. ," '.'',,, ",," ',
-

,d ." '_€ . ,. .'_ '.''% ,,. ,.. *'_ .. " -.

0

Apparently, very little progress has been done in this area for evaluating elementary functions

since 1970, with the exception of (9:128).

The equations for the expansion in Chebyshev polynomials for the sine and cosine,

when expanded, can be rearranged in a form which resembles a power series expansion. New

equations were found that, with a change of constants, were in terms of powers of x instead of

the Chebyshev polynomials. The hardware implementation of these equations requires less

hardware per pipeline stage than implementation of the equations in terms of the Chebyshev

polynominals. This began a search for representation of other elementary functions in Che- .

byshev polynominals that could also be expressed in terms of x. The result would be a pipe-

lined Chebyshev processor for elementary functions such as sine, cosine, tangent, arctangent,

natural logarithm, and exponential.

.

Problem

The basic problem is twofold: one, develop fast hardware for the elementary functions -

required by the VWE Processor, and second, develop the hardware for the Chebyshev Proces-

sor. Hardware for range reduction and scaling of the inputs for these functions must also be

determined.

Scope

The scope of this effort is to design hardware for the elementary functions for use in the

VWE Processor and the Chebyshev Processor, including range reduction and scaling of the

inputs to the processors as required. An estimate of the computation times for the functions

will be evaluated. The elementary functions for the VWE Processor are limited to sine,

I-' 2

0

cosine, and division. The elementary functions for the Chebyshev Processor are limited to

the sine, cosine, tangent, arctangent, natural logarithm, and exponential. The hardware

presented in this thesis is limited to single point precision as defined in the IEEE Standard

754 (10:3).

Organization . %

The remainder of this thesis is organized as follows. In Chapter II, the elementary func-

tions required for the VWE processor are presented. Range reduction formulas and scaling

are discussed as required. Chapter III is the developement of the Chebyshev processor for the

trigonometric, exponential, and logarithm fuctions. Chapter III includes the manipulation of 0

the Chebyshev polynomials for hardware reduction. Chapter IV is an analysis of the results

in terms of timing for the hardware presented in the previous two chapters. The hardware for

the Chebyshev processor is also presented. And Chapter V is the conslusion of the thesis and

also contains recommendations for follow-on work.

,.~%

AN
1-6''

r..NhA

H. Elementary Functions for VWE Processor

As stated in Chapter I, hardware support is required to calculate the sine, cosine, and

division of intermediate results in the course of solving the VWE. In this chapter, the algo-

rithms and hardware for solving these functions will be presented. The CORDIC method for

solving sine, cosine, and division is presented first, followed by the Chebyshev method for

computing sine and cosine. For both the CORDIC and Chebyshev methods, preprocessing,

which includes range reduction of the argument, and postprocessing are discussed and the

hardware for the each of the methods is presented.

CORDIC Algorithm

The Coordinate Rotational Digital Computer (CORDIC) was introduced by (15:330-

334). CORDIC was used to solve "the trigonometric relationships involved in plane coordi-

nate rotation and conversion from rectangular to polar coordinates" (15:330). The CORDIC

algorithm can be used to solve not only the elementary functions such as the trigometric and %

logarithmic functions, but they can also be used for multiplication, division, and conversion 0

from decimal to binary (3:335-339). "-_

The iterative equations that CORDIC uses to solve for the various functions are as fol-

lows (13:1283):

Z,+, = Zi - dei (2.1)
•

2-1

,7..

Y,+= Y, + dX2 - ' (2.3) .

where X0, Yo, and Zo are inputs, and m, di, and e, depend on the function to be calculated.

The final answer depends on the function being caluclated, as the final result may be

any combination of Zi, X8, or Y8. The initial values of Z, X. and Y also depend on the function

being evaluated.

The effect of the equations is to rotate the input through a given sequence of angles

until the angle of rotation converges to zero. The input is given in terms of the magnitude of S
L

the vector it represents in the Cartesian coordinate system. The input is rotated in the follow-

ing sequence of degrees: +/- 90, +/- 45, +/- 26.5 and so on, to converge on a rotation of 0

degrees. The X and Y components of the input argument are computed for each rotation and

are added or subtracted from the previous rotation. The unique selection of the angles of %

rotation is such that the rotation of the components can be done by shifting and adding, as 1-

seen in Equations (2.2) and (2.3). The shifting is done in place of the multiplication because

a multiply by 2- 1 is the same as i unitary right shifts in binary.

To calculate the sine and cosine of the argument, cx, the correct assignments are made to

Equations (2.1) - (2.3). The argument, a must be range normalized as discussed in the next

section. The CORDIC equations to calculate sine and cosine are shown in Equations (2.4)- '..-'-

(2 .6) . ' -

Z,. -Z, - sign(ZXtan - (2-)) (2.4)

Xi., =X, - sign(Zi) (2-) (Y,) (2.5) %

Yj!= Y, + sign(Z) (2-) (Xi) (2.6)

AA.

2%

2-2 . e...'0

%.

where

Z0 range normalized a A"'
Xo=l
Yo =0

After i iterations, Xj~1 is proportional to the cos (Z0) and Yj 1 is proportional to the

sin (Zo) (13:1283). The results are proportional to the sine and cosine because an error factor le

of I/K is introduced in each step of the iteration. In order to compensate for this, X0 is set

equal to K, where S

K = fj cos(tn - '(2-)) (2.7)
i=O

and Yo is set equal to 0.

One benefit of these equations is that they solve for the both the sine (Zo) and

cosine (Zo) simultaneously. Other benefits are realized in the hardware and are discussed in

the hardware section. ,.

Each iteration of Equations (2.3) - (2.6) results in one additional bit of accuracy for the

sine and cosine of Zo. To meet the IEEE Standard 754 for single precision (10:3), 24 itera- -

tions will be required. This results in an accuracy of 2-24 or 6 * 10-0, which is 7 to 8

decimal places of accuracy. For 24 iterations, K = 0.607252936.

Preprocessing and Range Reduction. The argument, a for the CORDIC algorithm "

must be range normalized to the range [-x/2, xr/2]. Range reduction for sine and cosine is

possible because of the periodicity of the functions. Additionally, the positive argument is

folded into the first quadrant and the negative argument is folded into the fourth quadrant.

One equation to reduce the argument to this range is found in (2:107). The equation is

2-3

40

WrV 44 W %r. %-" 1

S
a= (a * it) +b (2.8)

where b is in the range [-x/2, z2/2].

To find a in Equation (2.8), divide both sides by i: ,.P

a = (ac/) - (b/i) (2.9)

where (b/it) is in the interval [-1/2, 1/2]

Define -
rJ .

N = Integer portion of (a/it) or N -L(a/i)J (2.10)

and

F =Fractional portion of(a/ix) or F =(a/it)- L(a/)J (2.11)

where 0 <F < 1.

The effect of multiplying a by 1/7t is to find a multiple of x such that the integer part of a/it,

N, is a multiple of i, and the fractional part, F, is a rotation or offset, in radians, from either 0

or i. If N is even, then it*F is the offset from 0 or the positive x axis (Figure 2.1). If N is

odd, then F*i is the offset from i or the negative x axis. The direction of rotation from the "

axis depends on the sign of N. If N is positive, then the rotation is counterclockwise. If N is

negative, then the rotation is clockwise.

The input to the CORDIC processor, ZO, is equal to F * x. But, as seen in Equation]

(2.11). the range of F is too large. F must be further reduced to the range [0, 0.5]. This is -

2-4

VIP..

ne,,

Pi /2

Sine Positive Sine Positive
Cosine Negative Cosine Positive

Argument Negative Argument Positive

N Odd 0,N Even

ArguentPosiiveArgmentNegtiv

IVI

Sine Negative Sine Negative
Cosine Negative Cosine Positive

Figure 2. 1. Sign of Sine and Cosine

2-5

accomplished by subtracting 0.5 from F if F 2 0.5. But if 0.5 is subtracted from F, then 0.5

must be added to N so that the equality (a/ t) = N + F will be maintained.

Consider the case where a is positive. After the argument is multiplied by I/t, the

argument is folded into either the first or second quadrants if N is even, the third or fourth

quadrants if N is odd. Then F is in the range [0, 1). However, F must be in the range

[0, 1/2]. To accomplish this, if F > 1/2, then N is incremented. To maintain the equality,

1/2 is subtracted from F. The argument is now folded into either the first or fourth quadrant.

Finally, F is multiplied by t to satisfy Equation (2.8). The input to the CORDIC processor is •

(F* n).

Basically the same applies when ot is negative except both N and F are negative. The N

difference is that after a is multiplied by 1/x, if F > -1/2, then -1 is added to N. Again, to

maintain the equality, -1/2 is subtracted from F. The input to the CORDIC processor is still

(F).

Fortunately, the CORDIC equations for the sine and cosine compensate for the sign of

the final answer if the argument, a, is positive. Thus, X2 4 and Y 24 have the correct sign if a-

is positive. However. if a is negative, then both X2 4 and Y24 must be multiplied by -1 to

obtain the correct sign.

The input to the CORDIC Processor for the VWE Processor is in the IEEE Standard

754 floating point format (10:3). As will be seen in the hardware section, the hardware for

the CORDIC Processor is fixed point. Therefore, part of the range reduction includes a

conversion from floating point to fixed point.

2-6

'.ddfV'?#,..._,J.::

The following steps are necessary for range normalization of .

(1) If ot is positive, the sign equals + 1. t

Otherwise, the sign equals -1.

(2) Compute = (/i), which consists of an integer part, N, and a fraction part, F.

(3) If IFI 20.5, thenF=F-(sign * 0.5)andN=N+(sign * 1).

(4) Compute Z0 = F*i.

(5) Convert Z0 to fixed point and loaded into the Z register of the CORDIC processor.

CORDIC Postprocessor. As stated previously, the sign of X 2 4 and Y24 must be

corrected. Also, results from the CORDIC hardware are in fixed point format, so normaliza-

tion and conversion to the floating point format must be done. These functions must be

accomplished in the postprocessor. The inputs to the postprocessor are the sign, X 24 and Y24

where X24 and Y24 are the final values output from the CORDIC hardware.

The postprocessing consists of the following: %

(1) Normalize X24 and Y 24 .

(2) Convert X24 and Y2 to the floating point format.

(3) If sign equals -1. invert the first bit of the floating point numbers, X24 and Y2 4 , as the ' 'p

first bit of the floating point number is the sign bit.

CORDIC Hardware. The benefits of using the CORDIC equations in a binary

machine are realized in the hardware as the hardware for the CORDIC processor is quite sim- v
pie, consisting of three adders/subtractors and three shifters, plus interconnection (Figure

2.2). The adders/subtractors can be fixed point. This results in faster computation times as

fixed point adders and subtractors are faster than floating point adders and subtractors. One '.

mason is that the floating point adders and subtractors must perform a normalization after .,,

2.7

1-"S,

X0 YO

.;A.

I~~ew ZtegistRegste

ShiferShfe

C ie 2.2 CO CHrwr o ieadCsineZ

z2-

each operation. A normalization is not required by fixed point adders and subtractors. ,

Another reason fixed point hardware is used is that shifters are used in place of multipliers, S

because in binary, a multiply by 2- ' is the same as performing i right shifts in the fixed point

format. Right shifts are not equivalent to multiplication in the floating point formal .

CORDIC Division. The basic CORDIC equations can also be utilized to perform divi-

sion as presented in (2:108). To use CORDIC for division,

Z.j =Z, + (sign(Y)(2-')) (2.12) 0

X i .! = X (2 . 1 3), .%' '
% %J

Y = I Y - sign(Y) (X) (2-) (2.14)

where ,

Xo = divisor
Yo = dividend S

Z0=0 '

Z.+1 = YO/XO

Range reduction for division is easily accomplished since the input to the preprocessor
0

is in the floating point format. Only the mantissa of the floating point number is used in the

CORDIC processor. This greatly simplies the preprocessing as compared to that for sine and

cosine. Since the VWE Processor only requires the reciprocal, then Yo is set equal to I and
0

Xo is set equal to the mantissa of the floating point number. The mantissa must be convened

to the fixed point format.

The preprocessing of the exponent is to either add or subtract twice the unbiased

exponent from the biased exponent of the argument, which then becomes the exponent of the

quotient in the floating point format. If the exponent of the argument is positive, then the

unbiased exponent is doubled and then subtracted from the exponent of the argument. If the

2-9 V
' ,% 0 -"

J" ." P
V'I"-' "5,"1

. . .* . ' % ' , . . " % " . " % % .

exponent of the argument is negative, then twice the magnitude of the unbiased exponent is .%,V.o% %

added to the exponent of the argument. •

The exponent and mantissa can be separated because the reciprocal of any number in

scientific notation (and the floating point format is scientific notation in binary) is equal to the

reciprocal of the mantissa times the inverse of the sign of the exponent. For example, the

reciprocal of 1.2 EIO is equal to (1/1.2) E-10. But since the exponent is biased by 127,

changing the sign of the exponent of the argument does not equal the reciprocal of the

exponent. Instead, the unbiased exponent must be calculated by subtracting 127 from the 0
, % '.

exponent.

The hardware for the CORDIC division is the same as that for CORDIC sine and

cosine, except that the extra hardware for the X's is not required (Figure 2.3). The ROM for

division contains the values for 2- '. The ROM could be replaced by a shifter.

Chebyshev Method

The theory of best approximation by polynomials was founded by P. L. Chebyshev

(12:6). A polynomial, P.(x), can be found which is a best approximation of a function f(x). -

An iterative process for constructing polynomials of the best approximation, P,(x), can be

used to find approximations to the function f(x) (12:7). The basis for these iterative equa- .

tions is the Chebyshev polynominals, T,(x), which are defined as follows (5:48).

To(x) =1 (2.15)

T (x) =x (2.16)

2-0-..

XO YO

xoeise YoRgseIo1

Shifter .- -.

ROM~ I

".

I~ ~ %- "

Aderde-

Figure .3. CODIC Diisionard-ar

2-11

• .- e

Z0 •

i Adder -.

-" .-=

Figure 2.3. CORDIC Division Hardware - "

I,"'..%

2-11
I'

0. -. _

0

T+) * x *T.)- T._I (2.17) A' "

where n < 2.

The expansion of Chebyshev polynominals for the sine and cosine are introduced in

(12:84-87). The following are the Chebyshev polynominal expansions for the sine and cosine

functions:

sin (t/2)x =x ak Tk(2x2_1) (2.18)
k=O

cos (7c/2)x= ak Tk(2x 2-1) (2.19)
k-0

where I x 1 _< 0.

Equations (2.18) and (2.19) both solve for (in/2)x. Substituting the minimum and max-

imum values for x in the equations reveals that the equations can be used to solve for sin (z) P. h.

or cos (z), where z is in the range [0, xt/2]. Even though the equations will provide answers

for this range, the input range is still [0, 1]. This implies that both range normalization and

scaling are necessary. Both of these will be discussed in the next section. The constants for

the sine and cosine series are unique and are listed in Table 2.1.

Preprocessing and Range Reduction. The range of the arguments for the Chebyshev

polynominals is [0, 11. However, as mentioned before, the equations solve for (nt/2)x. Qt.
Therefore, both range reduction and scaling must be done to put a in the correct range. Scal- -

ing of the reduced argument is such that [0, 1] equates to [0, x/2]. Two methods are

presented to perform this range reduction and scaling. The first method is a modified version ___

of that for the range reduction for the CORDIC algorithm presented earlier. The second

2.*1

2-12 ,:1.

Table 2.1. Constants for Chebyshev Sine and Cosine (12:87-88)

Constant Sine Cosine
ao 1.276278962 0.472001216'
al -0.285261569 -0.499403258
a2 0.009118016 0.027992080
a3 -0.000136587 -000596695

a4 0.000001185 0.000006704
11 -0.0100000007 -0.000000047

method is from (9:123) and is another variation of the method presented for the CORDIC

range reduction for the sine and cosine.

The first method is based on the range reduction to the range [-it/2, ic/2] which must ,
be scaled to [0, 1]. Instead of folding the argument into the first or fourth quadrants, the "

argument is folded into the first quadrant. However, the required range is not the entire first

quadrant which is [0, xr/2I, but the range of the input to the Chebyshev equations is [0, 1].

The trigometric relationships

cos t =sin ((it/2) - t) (20)

and

sin t =cos ((ic/2) - t) (21)

are used to process the input to the required range.

A portion of the scaling is performed by not multiplying the fractional part by it as ' "
0

before with the CORDIC range normalization. The remainder of the scaling is accomplished -P"

by multiplying the fractional part by 2. The range reduction and scaling have modified the

Chebyshev equations from solving for sin (it/2)x or cos(t/2)x to solving for sin (x) or cos (x).

2-13

%p.p.:t
.., -. , .. , .-.. * ,, , - .. --. : - .: .,, ,-, , . .

The argument, a, is still multiplied by 1/it, but now if the fraction part, F, is less than or

equal to 0.5, y, the input to the Chebyshev equations, equals 2*F. Otherwise, y is equal to S

1-(2*F).

The determination of the sign of the final output of the Chebyshev Processor is more A

complicated than that for the CORDIC Processor. For the CORDIC range reduction, the qua-

drant the argument was in did not matter since the CORDIC equations compensated for this.

However, since all values for the Chebyshev Processor are reduced to the first quadrant, then

the quadrant the argument was in must be known. 0

For a positive argument, the sign for the sine of the argument will be positive if N,

where N is the integer portion after multiplying the argument by I/ It, is even because the sine

function is positive in the first and second quadrants, quadrants which can be entered by an

even multiple of it. Recall that F, the fractional portion after multiplying the argument by -

1/it, when multiplied by t, is the offset from either the beginning of the first quadrant or the

third quadrant. The third and fourth quadrants correspond to odd multiples of t. Therefore,

if N is odd, the argument was in either the third or fourth quadrants and the sine will be nega- .-

tive.

For a negative argument, the sign will be the negative of that above. The effect of the

fractional part of a negative argument after multiplying by 1/7t is to enter the quadrants from

a clockwise rotation, instead of a counterclockwise rotation as for the positive argument.

The sign for the cosine of a positive argument is more complicated since the cosine is

positive in the first and fourth quadrants but negative in the second and third quadrants. "'
"A,.

When N is even and F 5 0.5, the argument was in the first quadrant. Recall that from Equa-

tion (2.8), F should also be multiplied by t. However, due to scaling considerations, this is

not done. Before scaling, the 0.5 used in the inequality is the scaled equivalent of t/2. So,

2 - 1 4 W-. i i

an even N equates to an even multiple of x, which places the argument at the beginning of the

first quadrant. All values in the first quadrant are between 0 and x/2. Therefore, when 0

F 5 0.5, the argument was orginally in the first quadrant. By the same reasoning, when N,

the sign of the result is positive. Otherwise, the sign is negative since the argument was

either in the second or third quadrants.

The effect of a negative argument is not the same for both the sine and cosine functions.
, p ',p

A negative argument equates to a clockwise rotation through the quadrants instead of a coun-

terclockwise rotation. For the sine function, if N is even, the rotation will be to the fourth and -

third quadrants where the sign is negative. Conversely, if N is odd, the rotation will be to the

second and first quadrants where the sign is positive. However, the sign for a negative argu-'/

ment for the cosine function is the same as that for a positive argument since the cosine func-

tion is positive in the first and fourth quadrants and negative in the second and third qua-

drams. A clockwise or counterclockwise rotation will result in the same sign for the cosine

function.

The steps for reducing the range to [0, 1] follows.

(1) Multiply tby l/7t.

(2) Separate into integer, N, and fraction, F.

(3a) For Sine: IfF < 0.5, then y = 2 * F and compute the sine ofy.

Otherwise, y = 1 - (2 * F), and find cosine ofy.

(3b) For Cosine: IfF S 0.5, then y = 2 * F and compute the cosine ofy.

Otherwise, y = 1 - (2 * F), and find sine ofy.

(4a) For Sine: If N is even and positive, sign of the resultant is positive.

2-15

%--

I, .%, '..
*: .._'

If N is odd and positive, the sign of the resultant is negative.

If N is even and negative, sign of the resultant is negative.

If N is odd and negative, the sign of the resultant is positive.

(4b) For Cosine: IfF < 0.5 and N is odd, then sign is negative.

Otherwise, the sign is positive.

The method found in (9:123) uses the same basic equation but results in the use of dif-

ferent hardware. S

(1) Compute u = (2/n)x.

(2) Compute v = u -4L(u+l)/4 j .

(3) Set z =v if v < 1.

Otherwise, z = 2-v.

(4) Ifz!5O,thensignequals-1. S

Otherwise, sign equals 1.

(5) The magnitude of z is input to the Chebyshev Processor.

Chebyshev Processor Hardware. Equations (2.15) - (2.17) demonstrate the recur-

rance relation of the Chebyshev polynominals. This relation is used to design a processor

using "pipeline networking" (9:121). A single stage of the pipeline for computing sine and

cosine is shown in Figure 2.4. A single stage consists of 2 multipliers and 2 adders. The

multiplier and adder on the left side of the figure are used to compute the sum of the product

of the constants and the Chebyshev polynomials. The multiplier and adder on the right side

of the figure are used to compute successive terms of the Chebyshev polynomials, T.(x).

0

2-16]

r .- .. .;.',, - . ..'.- " -................... • . .

'p.6

'?

T

Multiplier 1Multiplier
Sum

n - 1 Tn -1

AddeK Adder

Sum ,-
n Tn + 1

Figure ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ .2..Snl tgdfCebs rcso 917

2.17 % %

''p

0

The number of pipeline segments depends on the number of terms used in the summa-

tion. A total of 4 segments are required to meet IEEE Standard 754 for sine and cosine 6

(9:124). The pipeline for the Chebyshev processor is shown in Figure 2.5. Note that since

To(x) = 1, the output on the left side of the first multiplier/adder pair is the first 2 terms of the

summation. As with the single stage shown in Figure 2.4. the left side of the figure computes

the sum of the product of the constants and Chebyshev polynomials and the right side com- --

putes successive terms of the Chebyshev polynomials.
-K'*p

The preprocessing for range reduction as well as the postprocessing are also pipelined. '

The preprocessing for the sine and cosine are shown in Figure 2.6. The hardware shown in

this figure is for the range reduction and scaling based on the method used for the CORDIC 1I_

range reduction.
-%L

%;:* :-

2.1.

0P %

d. ,°.

S."•j'

I

S""v

-..:.

0% 'z. s • ,,

al 2x

Multiply Multiply I

aO

AdderAdder

* S

a 2 2 x

Multii Mutipl

-LmulS'

AdderAdde

a3 2x'

%- ZC

'Si

2-19S

1 /pi x

Multiplier

Integer2

IMultiplier
0 1 S

y

S Subtractor
M Ux

To PostprocessorMu

TOChebvshev Processor

Figure 2.6. Preprocessing for Sine and Cosine

2-20

I.

I1. Expansion of Chebyshev Polynominals

The equations for the expansion of the Chebyshev polynominals for sine and cosine that AN

were presented in Chapter II can be simplified by manipulation of the equation to polynomial

* form as a function of x instead of the Chebyshev polynominals, T.(x). A 25% reduction of

hardware for each pipeline stage of the Chebyshev processor is possible. The equations as a

function of T.'s require that the partial sum be computed in parallel with the successive T. "s.

However, the same equation as a function of x does not require the computation of T., but S

only the powers of x. In particular, the equations as a function of x require either the even

powers of x or the consecutive powers of x to be computed. Thus, an adder can be removed

from each stage of the pipeline (See Figure 3.1).

An even greater reduction in hardware as well as a reduction in the time required to

compute the functions are realized for Chebyshev polynominals which redefine the x of the

Chebyshev polynominal. For example, consider the Chebyshev polynominal T (2x'-i).

After any range reduction or scaling that may be necessary, x must be squared, doubled, and

decremented by one before entering the Chebyshev processor. Thus, two extra multipliers % %

and one extra adder/subtracter are added to the preprocessor. These extra steps are accounted

for in the constants for the equations as a function of x.

Hardware reduction is also possible when the equations as a function of T.(x) require

only the even or odd terms of the Chebyshev polynomials. Since the equations are iterative,

consecutive T,(x)'s must be computed regardless of whether only the even or odd terms are

needed to compute a given transcendental elementary function. For single point precision, at

least the first 5 terms of the Chebyshev polynomials are needed. If only the even values of
'C,

T.(x) are needed, T2 (x) through Tg(x), then 8 pipeline stages will be required to compute the

function. The same equation as a function of x, would only require 4 pipeline stages.

3-1
°S%

-. ** ~-* ,-.-C.. .
S % • % "C " - S ., .- "" " *"""%"U% ."" """"" . °% """% •" % S "

°
'" r

0

a.%

%a

. .'.d

Sumn-
n - 1

Adder

X n Sum n

Figure 3. 1. Single Stage of Chebyshev Proccssor as a Function of x

3.2

....• ow Rr rrn WV% flM-IVnA.' ,.. V... W_, v t% '. WLR w- IL W-

The constants for the equations as a function of T.(x), referred to as ak in this thesis, do

not depend on the number of iterations that will be performed. However, as a function of x,

the constants, bk, do depend on the number of iterations that will be performed, for each itera- ,. 5

tion adds another constant to each term of the series. That is, the number of terms needed in

the Chebyshev polynominal must be considered before the bk's are calculated. The number A
of terms is determined by the precision required for a particular application.

As stated in Chapter I, the Chebyshev polynomials can be used to compute functions

other than sine and cosine. In this chapter, Chebyshev polynomials to compute tangent,
, % 5,.

arctangent, exponential, and natural logarithm will be discussed. The equations as functions

of the Chebyshev polynomials as well as x and the constants, ak's and bk's, as well as the --

preprocessing and postprocessing hardware will be presented.
*,.%..

Sine and Cosine

.oO. -.

The equation for the cosine function using Chebyshev polynominals can be expanded

and simplified as a function of x with different coefficients as follows. The equation for the

cosine for single precision is '..1

4 .

cos (piI2)x = , ak Tk(2x 2 -1) (3.1)
k-O

Substituting T' for TA(2x 2 -I) and expanding Equation (3.1) results in

cos (piI2)x = aoT'o + ajT' + a 2 T'2 + a3T'3 + a 4T' 4 (3.2) 5*

where

VO= I2T' I _- 2_x2-I

3-3 5.-'..

-,J
..... ,- ...+_.-....: .-..-.... .:,-.... -;.. ,.:....-.. ..-., -. ,;..;..;,. ,2 , ..2 % - ,,,..,. ,+,:,,-.-+..•-,.,,

.- s' -- :'," , . --'-€.- . +- . > ,, , , .r,.% • + - ,"x ._, J.: ,,. 's , . * -.. ' L. %. ,." . %". , ,-, 95' .-* --"-,,*_5 - -,-i5
T

"MUUUKUWUWU Wk PVPWWUVW'uwN WU WWWV~ U V Wlf.WVW VVE WVV UVW W- WU

,r v ,-.

T'2 = 8x4- x2 +l I.. .

= 32x6 -48xd+18x 2 -1
T'4 = 128x-256x 6+160X4_-3x 2 +I

T',l

Substituting the values for T'k in Equation (3.2) results in

cos(pi/2)x = a0 +a 1(2x2-l)+a2 (8x 4-8 2 +1)4-a 3(32x6 -48x 4 +1 8x 2-1)

+a4(128x 8-25 6X6+160X 4 -32X 2+1) (3.3) P

Expanding all the terms in Equation (3.3) results in

cos (pil2)x = ao+2ajx 2 -al+8a 2x -8a 2x
2 +a 2 +32a 3x

6 -48a 3x
4

+18a3x2-a 3+28a 4
8 -256a 4

6+160a 4x
4-32a 4x

2+a4 (3.4) ,*,

And finally, grouping like terms of x results in."

cos (pi /2)x = (a 0-a 1 +a 2 -a 3-+a 4)+(2a 1-8a 2+1 8a 3 -32a 4)x 2

+(8a2-48a3+160a 4)x4+(32a 3-256a 4)x6 +128a 4x
8 (3.5) "% %...

By substituting the values from Table 2.1 for the ak s in the above equation, the equa-

tion is now a function of x with new constants, bk such that %

4 P

cos (pi/2)x = b 2k x2 (3.6) S
k-0O

3.'
:P.. .:,.-P,'

'.*. d

3-4.

S0;

%~ -

where

bo = 0.999999995 3
b2 = -1.233698208

b4= 0.25 3650711
b6 = -0.020810573

bs= 0.000858163 k

The development of the sine as a function of x is similar and follows:

4
sin (in/2)xx X a, Tk(2x 2-l) (3.7)

kg)

Substituting T'k for Tt(2X2 -l) and expanding Equation (3.7) results in

sin (pi 12)x = aoxT'0 +a xT'1 4a 2xT'2+a 3xT'3+a 4xT'4 (3.8)

Substituting in the values for T'k, expanding the equation, and grouping together terms of x A

0
results in the following equation:

sin (pi/2)x =(ao-al-ia 2-a 3 sa 4)x+(2a,-8a 2+18a 3-32a 4)X3

-4(8a 2-48a3+160a 4)X5+(32a 3-256a 4)x+128a4 X9 (3.9)

By substituting the values from Table 2.1 for the ak'S in the above equation, the equation is

now a function of x with new constants, bt, such that

sin (pi/2)x =xj b,k xS (3.10)
k=O

3-5'

RD3

77_1.A
-'

Ve

where • A.

b o = 1.570796290
b 2 = -0.645963360
b4 = 0.079688480
b6 = -0.004627223
b 8 = 0.000150820

The constants, bt's, for the sine and cosine expansions of x are listed in Table 3.1.

These constants are for the expansion of the first 5 terms as required for single precision.

Table 3.1. Constants for Chebyshev Sine and Cosine as a Function of x

Constant Sine Cosine ",'

b0 1.570796290 0.999999953
b2 -0.645963360 -1.233698208
b 4 0.079688480 0.253650711 -
b6 -0.004627223 -0.020810573 •
b . 0.000150820 0.000858163

This expansion allows for an architectural pipeline implementation. The pipeline for

the expansion of the Chebyshev polynominals for the sine and cosine as a function of x is

shown in Figure 3.2. The significant difference between this figure and Figure 2.4 is that one

less adder is required per stage. This is a hardware savings of approximately 25%. .

.%

3-6

! '.°4.',¢S

i "d ' P.'' '-<~"~ d'~' .g

% t h

bi1

Multiply Multiply ,

S'

ID,.

A dde r '--

xorx~,

x'. or

b2

Adder

20

xor x'
'*.

Multiply Multiply of.x

37 . 4

FiM t I "'y
Adder J>,

-. 44"."

Multiply .4.4-,To Postprocessor. -'

Figure 3.2. Chebyshcv Processor as a Function of x

3.7" .0;:

Tangent V

The formula for the Chebyshev approximation of tan (x) is as follows (11:87):

tan (pil4)x = " a2.+ Tzk+ (x) (.1k-0k

where (IxI 1 1).

Computer simulation of this equation revealed that the first 6 terms of the summation

are required for single precision. The azk.x are listed in Table 3.2. .- "

Table 3.2. Constants for Chebyshev Tangent Function (11:87)

0 0.93845067562 IN P%""

1 0.05717001507 0
2 0.00406513598
3 0.00029161838
4 0.00002093559
5 0.00000150310

Following the same steps as for the sine and cosine, the Chebyshev expansion as a func- % ,

tion of x is as follows.

tan (pi/4)x = , b+ x 2 (3.12)
k=O

However, to simplify the pipeline so that only the even powers of x are required, the

equation can be changed to the following: "5".'

3-8

.0' .d

V~~Mw ~W wVW'WWWVWIPIPVVT R.-WJ'IrI--q IV, -N TIP -V 'w .

5S

tan (pi/4)x =x , bzL x (3.13)
k=O

where

bo = 0.78539686786
b 2 = 0.16152638116
b4 = 0.03957327280
b6 = 0.01083740608
bS = 0.00112678144

b10 = 0.00153917440

Preprocessing for Tangent. Given that Equation (3.11) computes tan(x), and the

range of x is [0, 1], only the tangent of [0, -x/4] is available from the equation. Unlike sine

and cosine, the magnitude of all values of the tangent can be found between 0 and xr/2. Two S

methods exist to obtain the tangent of inputs in the range [7t/4, x/2):

Find the cotangent since

tan (x) = cot ((ic/2)-x) (3.14)

or subtract x from t/ 2 and invert the output of the processor since

tan ((it/2)-x) = 1/tan (x) (3.15)

Both methods would require a division. The Chebyshev polynomials for the cotangent solves :".'-'

for xcot(x), so a division by x is required to find cot(x). The range reduction is the same for

both methods, the only difference is the Chebyshev equation used to solve for tan (x). Find-

ing the cotangent is more desirable as a function of hardware, since the tangent method

requires a division in the postprocessing phase. For the cotangent equation, the reciprocal of

x can be computed in parallel with the Chebyshev processor, so that only a multiply is

required in the postprocessor. A multiplier is already required by the sine function in the .,,

postprocessor. The Chebyshev polynomial expansion for the cotangent is as follows (11:87):

3-9 -. '

) •

4(%W ~ *~~ * *~- ." .-.... a*

x cot (pi/4)x = : a2t T2 (x) (3.16)

k..O

Computer simulations for Equation (3.16) revealed that the first 6 terms are necessary

for single precision. The constants, a 2's for cotangent (x) are listed in Table 3.3.

The same equation as a function of x is

I~ 2a

x cot (pi/4)x = , (3.17)

where

bo = 1.27321935363
b2 = -0.26143595267
b 4 =-0.01173517139 .
b6 = 0.00001332237
bg = -0.00003841664
b 10 = -0.00000294400

The steps for reducing the range to [0, 1] take into account the symmetry of the tangent

function. As with the range reduction for sine and cosine, after the multiplication by 1/it, the

Table 3.3. Constants for Chebyshev Cotangent Function (11:87) , ,

k a -

0 0.93845067562
1 0.05717001507

2 0.00406513598
3 0.00029161838
4 0.00002093559
5 0.00000150310

.'-. ,.

3-10

Sa ,,

* WV - ~ .-t - -.

°. •

product is separated into an integer, N. and fraction, F. Due to the scaling, F will be multi- , .,

plied by 4 instead of 2. However, further reduction of F is necessary if F is greater that 0.25 -- "

since lxi S 1. The range that can be solved by the Chebyshev equation for the tangent is -"
'. 'll

[0. I/4]. Since tan(x) = tan(7t - x), two possible ranges for the F before the multiplication by ..

4 are considered as inputs to the Chebyshev tangent equation: x _<0.25 or x_ 0.75. For _

x_ 0.25, no further reduction is necessary. But if x >0.75, then x must be subtracted from 1. . - --.

.. P '

For x in the range (0.25, 0.75), the Chebyshev equation for the cotangent will be used .'-

as tan(x) = cot((7t/2)-x) and cot(x) = cot(it -x). If x is in the range (0.25, 0.5], x is sub- S

tracted from 0.5. If x is in the range (0.5,0.75], then 0.5 is subtracted from x. *,. ..

%*%°% %

The following steps are used to reduce the input to the required range. The rmsulting %.

hardware is shown in Figure 3.3. b

(I) M ultiplyx 4by 1/ t n -. f

(2) Separate into integer, N, and fraction, F. e t: 5-x0-

(3) f F _ 0.25, then x = 4 * F and compute the tangent ofx. mbstcd--

F0.25 < F 0.5, x =4(0.5 -F), and fed cotangent of x. used

If 0.5 < F _ 0.75, x = 4(F -0.5), and find cotangent of x.

If F S 0.75, then x = 4(1 -F and compute the tangent ofx. 'p

(4) If N is even and a 0, sign = 1. '

If N is even and a < 0, sign = -1.

If N is odd and a 'a 0, sign =- 1.

If N is odd and a < 0, sign= 1.

3-11 o"• .

V S,

A %
J' %

Multiplier

0 1~

L 1, 2 or 3

Mux Subtfractor

To PostprocessorL
Mux.-

TOChebyshev Processor

Figure 3.3. Preprocessing for Tangent

3-12

0%.. 0. 4 ". W . .. %

* (* *~~**~' * *~r,%

Postprocessing for Tangent.. The postprocessing for the tangent function consists of

correcting the sign of the output of the Chebyshev processor. If the Chebyshev cotangent

equation is used, the output must be multiplied by 1 Ix.%

Arctangent

The expansion of the Chebyshev polynominal for the arctangent (11:1 111) is

tan-' (x) =x ak Tk(2 x-l) (3.18)
k-0

Computer simulation of Equation (3.18) revealed that the first 5 terms of the equation are

required for single precision. The constants for Equation (3.18) are listed in Table 3.4.

Table 3.4. Constants for Chebyshev Arciangent Function (11: 111).

k aj.

0 1.570796290 .

1 -0.645963360
2 0.079688480
3 -0.004627223

14 0.000150820

The same equation as a function of xis as follows:

4
tanft (x)=x Y, b2k X2 (3.19)

3-13 . '.

where

bo = 0.99999990304
b2 = -0.33332184597
b4 = 0.19961556588
b 6 = -. 13751623066bs = 0.07726269923

Range Reduction for Arctangent. The range reduction for the arctangent presents a

problem: a division is necessay if the magnitude of the original argument is greater than 1.

If the magnitude of the argument is greater than 1. then the trigonometric identity

tan- 1 (x) = nt/2 - tan- ' (1/Ix) (3.20) -,-

must be used. Since

tan-I (x) = sign(x) tan- ' (x) (3.21)

no problem is encountered in finding the arctangent of positive or negative arguments. -

The only two steps for range reduction follow. The range reduction hardware is shown

in Figure 3.4.

(1) If the argument is negative, Sign equals -1.

(2) If I x I is greater than 1, compute I Ix. Use 1 Ix as the input to the Chebyshev processor.

Postprocessor for Arctangent. The postprocessing for the arctangent function has two

possible steps. One is to correct the sign of the output if the argument was negative. The .-.",e

other step is to subtract the result from xr/2 if the magnitude of the argument was greater than

.. 14

3.14

eS

Um-m ""M vv U "rwr*U 3 U - U- - - t.'.-Ain-.A-jrm -U-N" a-b s'in' wnm- w'a-.--ne- lop rrn r n.

% 0
N,-6

Reciprocal

%

NI U X

To Chebvshev, Processor

Figure 3.4. Preprocessing for Arctangeni -

3.15

'V N**

Exponential

Two possible methods for the exponential are arailable For the first method, t~ko

expansions for the Chcbyshev polynomial for the exponential are required One is needed for
, '' ,

a positive exponential and the other is for a negative exponential The two equations tor the %

expansion of the exponential series follow (11:37-389 .. ,

e a* T(x) (3.221

% .5.

e = ak Tk(2x-1) (3.23)

.% .% ..%

k-0

Computer simulations for Equations (3.22) and (3.23) revealed that the first 6 terms are ..

required for single precision. The constants, at's for exponential are listed in Table 3.5.

Table 3.5. Constants for Chebyshev Exponential Function (11:37-38). . .-%

ak, e • e -Z ' r

0 1.06348337074 0.645035270 •
1 0.25789430539 -0.312841606
2 0.03190614918 0.038704116
3 0.00264511197 -0.003208683
4 0.00016480555 0.000199919 ...

5 0.00000822317 -0.000009975

:~ 4.

t . .%

% -. j•

A
0

3-16
-. 4.--

..- ,

As a function of x, the corresponding equations for the exponential are

ez Y,~ bk xk (3.24)
k.0%

where

b= 1.00000003902
b I = 0.99999621191 .-

b2 = 0.50005986425
b 3 = 0. 16631361911

N= 0.042649735950
bs = 0.00695192477

and

e~= b (3.25) *

k=-

where

0
bo=0.99999994524
b, =-0.69314320166
b2 = 0.24017948944

b= -0.05529960672
N4 = 0.00921087488
b5 =-O0.00947553245

The other equation for computing the exponential makes use of the identity

ex 2"' -2' *2' (3.25) N'

where

r = Integer portion Of X (In 2e)
s = Fraction of x (in 2e)

3-17

The equation as a function of the Chebyshev polynomials is as foWows (I11:37): .. e
}* m

2' = 2t 12 [Io((I/2)ln(2)+2 i l,((l/2)In (2))T,(2x-l)I (3.26)
k-I

-.

where '-
lo((l /2)In (2)) = 1.03025449181 NO%
S((1 / 2)In (2)) = 0.17590160392

13((1 /2)In (2)) = 0.01516500518
14((1/2)ln (2)) = 0.00087378181
15((1/2)In (2)) = 0.00000130864
16((1 /2)ln (2)) = 0.00000003777
17((1/2)ln (2)) = 0.00000000002

However, Equation (3.26) is not accurate enough for single precision. Only 2 to 3

decimal places of accurary can be obtained with this equation. ,U.

Range Reduction for Exponential. For Equations (3.22) and (3.23) the range reduc-

tion makes use of the identity S

eX =e e N e (3.27) ,

where N is the integer part and F is the fraction part. The values for eN are stored in a ROM

table. The F is fed into the Chebyshev processor and the result from the processor is multi-

plied by the value from the ROM table in the postprocessor.

For single precision and positive values of x, values for elv, for N in the range [0. 88] 0

must be stored in the ROM table. The range is determined by the largest value of eN which

can be represented in single precision. The largest number that can be represented is equal to

2128 which equals 3.4 E38. The natural logarithm of 3.4 E38 equals approximately 88.7. So,

e" is the largest integer value that can be represented in single precision.

3-18 .

-,.. -.

For a negative value of x, the ROM table must contain values in the range [-88, 01.

This time the range is determined by the smallest value of eN which can be represented in

single precision. The smallest number is equal to 2-127 which approximately equals 5.9 E-

39. The natural logarithm of 5.9 E-39 equals approximately -88.03. So, e-88 is the smallest N"

integer value that can be represented in single precision.

The following steps are used to reduce the input for the exponential function using the .

equations for e' and e -x. The range reduction hardware is shown in Figure 3.5. .- .9."-

(1) Separate into integer N and fraction F.

(2) Input F into Chebyshev processor.

(3) Lookup value in ROM table corresponding to N to obtain eN. Send to postprocessor.

Postprocessor for Exponential. The only step in the postprocessor is to multiply the

output from the Chebyshev processor by the value from the ROM table.

.-,,

Natural Logarithm

The expansion for the natural logarithm is rather complicated as a function of T, as can

be seen in Equation (3.27). However, as a function of x, the equation is rather simple and

eliminates much of the preprocessing that would be required to obtain the T,(x)s. The equa-

tion for the natural logarithm is (11:58) •

In (l+x) = a, T(l+(4+2(21 2"))x) (3.28)
k-O .S

where (2112/2) -1 < x 5 0.

3-19

%

0

X .

Extractor

Integer Fraction

ROM]

*0

N To Postprocessor X to Chebyshev Processor

Figure 3.5. Preprocessing for Exponential

3-20

| ,.

Computer simulation of Equation (3.28) reveals that the first 6 terms are required for

single precision. The constants, ak's for In (l+x) are listed in Table 3.6.

Table 3.6. Constants for Chebyshev Natural Logarithm Function (11:58)

k ~a,,
0 -0.16578909074 1.

1 0.17285446745
* 2 -0.00746966673

3 0.00043038842 ."

4 -0.00002789796.
5 0.00000192891

The same equation as a function of x is as follows.

5 "k

In (1+x)= b x (3.29)
k=O

where

bo =-0.00000000958
b1 =0.99999686448
b 2 = -0.50016647931
b3 = 0.33005325226
b 4 = -0.28021885649
b 5 = 0.06217418014

Range Reduction for Natural Logarithm. The range reduction for this function is

complicated but greatly simplified by the binary floating point format. The following loga- ir

rithmic identies are used for the range reduction.

3-21

%

n(rls) = In (r) - In (s) (3.32)'.

The range for the input is -0.292893219: <x _< 0. Since the Chebyshev polynominal

'.-?,

computes In (m+x), to find n (x), x+l must be in the range .707106781 3x+l !5 1. For rea-

sons to be discussed in the following paragraphs, the range is further reduced to >:

0.75: <x+1 <1. '
The first step makes use of Equation (3.30), where 3 is the exponent and n is the

mantissa of the argument, at. The first step is to extract the exponent and the mantissa of cc.

Then r becomes the exponent of a new floating point number, A, where the 23 bits of the

mantissa of A are all zeros and n becomes the mantissa of a new number, B, with an exponent .''

equal to 0.•

The floating point format is such that a number is normalized, which means that there is

an implied point before the mantissa, so B is greater than 1. But the rnge of x must be less

that 1. To make this appear as if the leading p is actually the first digit after the decimal, the •

exponent of B is decremented by 1. To maintain the equality, the exponent of A must be

incremented by 1.

In reality, decrementing the exponent of B does not change the mantissa. But for the

purposes of the range reduction algorithm, the first bit after the binary point can now be a 1,tisaofa

which means that the smallest the number can be (in decimal) is 0.5. Based on the value of

the next two bits, which are the first two bits of the 23 bits allocated for the mantissa, one of

three constants will be selected to form a product of the onstant and B which will be in the "

requred range.

3-22".,-'

,, .' ,

?."-.'...:an implied.'I point-.before"the mantissa,: so. B is- greater.. than--: "1"--:,?--.-ut-he rage. o x. mus be":-- lessbr --3 "-- I ,-'p.-j

Equation (3.31) is used to find the natural logarithm of A since A is equal to 1.0 x 2".

In terms of Equation (3.31), In(A) = mln(2) or A * n(2).

Finally, Equation (3.32) is used to insure the input into the Chebyshev processor is in

the proper range. For 0.5 _< x <0.625, if x is multiplied by 1.5, then x will be in the proper

range. And for 0.625 < x < 0.75, x times 1.2 will place x in the proper range. To compensate

for the multiplication by either 1.2 or 1.5, a division by either 1.2 or 1.5 is required to main-

tain the equality. However, the division would be part of the postprocessing, after the natural

logarithm of (l+x) has been calculated. The multiplication by either 1.2 or 1.5 in the prepro- .*'-

cessor can now be seen as a multiply by the natural logarithm of 1.2 or 1.5. To maintain the .

equality, a division by the natural logarithm of either of 1.2 or 1.5 is required. By Equation

(3.32), this division can be a subtraction.

The following steps are required to solve for the In (x) and the hardware is shown in

Figure 3.6.-"

(1) Separate input into exponent, m, and mantissa, n. Put each into new floating point

numbers such that A has an exponent equal to m and a mantissa equal to 1.0 and B has

an exponent equal to 0 and the mantissa equal to n.

(2) Multiply A by 2 and B by 1/2.

(3) If the most significant bit (MSB) of the mantissa of B, not including the implied I point, -

is a 1,thenx=(B * I)-1. •

If the MSB of B equals zero, then if (MSB - 1) equals 1, x =(B * 1.2)-l. .-..

If the MSB and (MSB - 1) equal 0, thenx =(B * 1.5)-1.

(4) Input x into the Chebyshev processor.

3-23 ..

S, .r%

x %

Extractor

Exponent Mantissa
2 1/

Multiplier Mlile

MSB Entire Number

In~~~~% 1.5I 115 1...
.1.

In.12.%

Multipliers

Mux MU

%-'

%4:--

MS

Multiplie~r

Subracto10

Subtracto

To Postprocessor To Chebyshev Processor

Figure 3.6. Prcproccssing for Natural Logarithm

3-24

(5) Compute C =A * n(2).

(6) If constant in (3) equals 1, subtract In(1) from C.

If constant in (3) equals 1.2, subtract ln(1.2) from C.

If constant in (3) equals 1.5, subtract ln(1 .5) from C.

(7) Send output from (6) to postprocessor.

Postprocessor for Natural Logarithm. The only step in the postprocessor is to add 1..

the value from the preprocessor to the output of the Chebyshev processor.

S0

3-25.~

IN

IV. Analysis of Chebyshev and VWE Processors

The results of the previous two chapters are analyzed in this chapter. First, the times for

the fastest hardware, including a multiplier and adder, will be discussed. Second, the number .

of pipeline stages for the Chebyshev processor will be considered. Also, a unified pipeline

for the preprocessor and postprocessor will be presented. Finally, analysis of the functions

for the times for the VWE processor will be presented.

State of the Art Hardware

Before any analysis of the processors can be done, computation times for the basic

hardware units must be presented. The faster these units can compute, the greater the

speedup of the processors. The fastest computation times found for the adder and multiplier

are those developed at the Air Force Institute of Technology and were provided by (6). The

times are presented in Table 4.1.

Table 4.1. State of the art hardware (6)

Unit Time(ns)
-Floating Point Multiply 80
Floating Point Adder 50
Fixed Point Adder 35
Shifter 5

4w.
4-1

..?7*
%~*%** ",' -g%..

M

- rvF 'Mlt't. KRW MAX 'UtY"r~ Kh% W W W91 W'yrjMy V ~r kJ W y r XXrTW W IT WVJ WV WW 7 4 Tr. 'rW. VT W' xY. ' W

Chebyshev Processor Analysis

As discussed in the previous chapter, when the expansion of the Chebyshev polynomi- ,

nals is expressed as a function of x, the constants, bk's, change, depending on the required

number of iterations.

To determine the bk's for single precision, all of the required functions were simulated

in Pascal. The computer programs are listed in the appendix. For single precision, 2-24 or 7

to 8 decimal places of accuracy are needed. The number of terms required for each of the

elementary functions are listed in Table 4.2.

Table 4.2. Number of iterations for Chebyshev processor. 0

Function Number
Iterations

sine 5
cosine 5
tangent 6
cotangent 6
In 5
arctan 5exp 5 1..

Since the design of the Chebyshev processor requires a pipeline for the evaluation of

the Chebyshev polynominals, 6 iterations will be required. This will require 5 pipeline

stages. As the first term of the summation is a multiply of the constant, bo times 1, the multi-

plication is not necessary. The first step of the first stage of the pipeline is a multiply by the .

4-2

S. t

d f

second constant, bI with x. The first constant, b0 is then added to the product in the last step

of the first stage of the pipeline. S

Each stage in the pipeline will take 160 ns to compute one step of the summation. The

pulse is based on the speed of the floating point multiplier. A multiply-add pulse was con-

sidered, but this would not suffice for most of the preprocessors, where two multiplies are

required. Since 5 pipeline stages are required, the time to fill the pipelined Chebyshev pro- %

cessor is (5 * 160 ns) or 830 ns. '/1

The preprocessor must be capable of range reduction and scaling for all of the func-

tions. The preprocessor must then have 12 steps. The time to fill the preprocessor is (12 * 80

ns) or 960 ns. The postprocessor consists of two steps: a multiply and an add. The time to

fill this pipeline is 160 ns.

The total latency, or time to fill the pipeline, is 1950 ns. One the pipeline is full, a

result will be available every 160 rs. •

Another benefit of expressing the Chebyshev polynominals in terms of x is that an

entire stage of the Chebyshev pipeline can fit on one chip. The polynominals in terms of

T,(x) will not fit on a single chip, so interchip communications must be considered.

Unified Pipeline for Preprocessing

An alternate design of the preprocessor for the sine, cosine, exponential, and natural

logarithm is possible because the range reduction for these functions is similar. The order in

which the steps for the preprocessors was presented for each of the functions in Chapter III •

was rearranged to become the unified preprocessor. Only a change in constants to the

4-3 '. '
% ,

preprocessing hardware is required. The hardware layout is shown in Figure 4.1. The con-

stants for the preprocessor pipeline are listed in Table 4.5. S

Table 4.5. Constants for static preprocessor pipeline.

Stage Sine/Cosine Exponential Logarithm .
Multiply] I / 1 2
Extractor Integer Integer Exponent 4%M

Fraction Fraction Mantissa 0
Multiply2 2 1 0.5, 0.6 or 0.75
Subtraction 1 0 1
Multiply3 1 1 Ln 2
Adder 0 0 Ln 1,_Ln 1.2 or Lnl1.5

The extractor is different for the natural logarithm function than for the other functions. * %

For the natural logarithm, the exponent and mantissa can be read directly from the input. But..

for sine, cosine, and exponential, a floor function followed by a subtraction is required. The

result from the floor function is the integer part. The integer is subtracted from the input into

the extractor which results in the fractional part. .

Vector Wave Equation Processor

The Chebyshev processor discussed above is not the same one that would be used for

the VWE. Since this processor would only compute the sine and cosine, only four pipeline

stages would be required. Also, the number of steps for the preprocessor would be reduced to

4 steps. And since the VWE requires both the sine and cosine of the same argument, an extra

multiplier and adder could be added to each stage of the pipeline to compute these functions

% %
4-4

-W°Y- 1 .

Input

Id 0

Multiply1 ,

- "
Extractor

Integer or ExponentI Fraction or Mantissa

d 3 i.i,.

Multiply2

Multiply3

d 2
d 4

0

Subtractor
Adder

.,..' .

To Postprocessor x To Chebyshev Processor

Figure 4.1. Unified Preproccssor Pipeline

4-5
"-4.,t'

.0

* * .. *.~ . ~ % .'. ~ - -. ~' * -'.~.*...... -

S. P S .

simultaneously. The latency would be (4 160 ns) for the prepcessing, (4 160 ns for the -

Chebyshev hardware, and (2 * 80 ns) for the postprocessor. The total latency would be 1440

ns. After the pipeline is full. the sine and cosine of an argument would be output every 360,",*

ns if the extra multiplier and adder are not added to each stage of the Chebyshev hardware. If."-

they are added, then the sine and cosine would be output every 160 ns.

The CORDIC sine and cosine processor requires 24 iterations to produce the sine and ""

cosine. Both the sine and cosine would be output every 2.2 us. The CORIC divider requires."2 -,"

48 iterations to produce the quotient. An output would be available every every 4.4 us.

. - i.

The slowest computation in a pipeline limits the output of the entire processor. The 4.4

us time for the reciprocal could be reduced by pipelining within the CORDIC unit. Even
without additional pipelining, the total time, once the pipeline is filled, for 720 observationupuevr

points, each consisting of a dipole broken into 500 subelements, would require (4.4 us 500

w720) equals 1.57 seconds. t a , t e s d 7 r

p cn p sw qu

7) a 5 c

..S5-

".'".

p..

0o, * '

V. Conciusions and Recommendations .

Conclusions

This study was motivated first by finding hardware to implement the elementar)' func-

tions needed to compute the VWE. The end result is to be an interactive CAD/CAM sytem

for computation of the electric and magnetic fields as well as the vector potential. An added

motivation was the discovery of the Chebyshev polynominals and the fact that they could be

transformed into a summation as a function of x, resulting in a pipelined hardware with one

less element of hardware per stage.

Chapter II discusses the various algorithms for the computation of sine, cosine, and 0

division. Both the CORDIC and Chebyshev algorithms were presented for the sine and

cosine functions. The range normalization and scaling of the input arguments was presented.

A division algorithm using the CORDIC equations was also presented. The hardware for 0

each of the algorithms was also presented.

In Chapter 111, the Chebyshev polynominals for elementary functions were presented.
@

These functions include the sine, cosine, tangent, arctangent, exponential, and natural loga-

rithm. Reduction techniques based on the properties of the functions were developed. The .-.

manipulation of the terms of the Chebyshev polynominals was also presented. The hardware

for the preprocessing as well as the Chebyshev equations as a function of x were presented.

The advantages of transforming the Chebyshev polynomials as a function of x are three-

fold. First, the hardware is reduced for each stage of the Chebyshev processor pipeline.

Specifically, one adder per stage is deleted. Second, the number of stages in the Cheybshev

processor is reduced if only the odd or even T.(x)'s are needed, as with the Chebyshev poly- .>-. .

nomial for cotangent. When using the T.(x) Chebyshev polynomials, each T,(x) must be

W -5

S1 1

calculated, even if only some of them are necessary. But, in terms of x, the pipeline is set up %M.

to calculate either the even powers of x or increasing powers of x. And third, hardware is

reduced in the preprocessor if the Chebyshev polynomial equation is not simply T,(x). For i'

example, the sine Chebyshev polynomial equation would require two additional multipliers

and one additional adder in the preprocessor.

And finally, in Chapter IV, state of the art hardware units for the basic hardware

required by the CORDIC and Chebyshev algorithms was presented. Using this hardware,

estimates as to the latency of the Chebyshev processor as well as the VWE processor was cal- S

culated. An alternate unified preprocessor pipeline was presented for calculating sine, cosine,

exponential, and natural logarithm.

Recommendations

Further work is needed to find hardware to compute the square root for the VWE pro- 0

cessor. An alternate hardware for computing the reciprocal is also needed as the CORDIC

processor is not very fast compared to the computation times that are possible with the Che-

byshev processor for sine and cosine. 0

Once the square root and division hardware is determined, hardware implementation of

the VWE processor should be done. Issues of concern are the time-space tradeoff analysis, .

optimal scheduling and utilization, and VHSIC technology concerns. The algorithms should

be modeled in the VHSIC Hardware Description Language (VHDL) to verifv the accuracy of

the algorithms and the hardware. The architecture may lend itself to wafer scale integration.

The same issues are valid for the Chebyshev processor. Further work is needed to determine -

5-2

, ,-.. -]' ,'-..- .. .4"*. •.*".. *. ", %, -.. " ." % -o..,r.. "..-_ -....... -. .-,. ' .- . ,-% r,,' ' ,.-.j .',..' r , 'r' ,'

-r-X ni -7 - 17T- -17-jr Y)7YY3.- i rWy vW - VT' 6 -

the control section for the Chebyshev processor. The Chebyshev processor should also be

modeled in VHDL.

Futher work is needed for the tangent and arctangent functions such that a division is

not required. Equations for the Chebyshev polynomials can be evaluated such that the divi-

sion may not be necessary. The unified preprocessor pipeline should accommodate these
>"r."

functions easily. Work in this area is mathematically intensive as the derivation of the con- ,J-

stants, ak, is difficult.

Research is also needed to determine if a Chebyshev polynomial can be found for 2' as .

discussed in Chapter III. The equation presented in Chapter III was not accurate enough for

single precision. But if an equation can be found, the hardware required to compute e'

would be significantly reduced as this equation would not require 176 entries in a ROM table. S

The number of constants, bk, would be halved for computing el as separate equations are

now required for a positive and negative exponential. The equation using 2x can solve for

both a positive and negative exponential.

5...

* "

5-3 -.''

* 0"

Appendix

Listing of Computer Programs

The following programs were written in Instant Pascal and were run on the Apple IIGS.

All of the programs are interactive and compare the value as computed by the software to

those obtained from either the CORDIC or Chebyshev algorithms.

Cordic Sine and Cosine *-'

PROGRAM cordicsincos; . ..

This program uses the CORDIC algorithm to compute the sine and cosine
of an input. The program performs range reduction, so that any value
can be input. The input is in degrees as the program converts the
input to radians. The program also computes the sine and cosine by
calling the predefined Instant Pascal functions which are computed
with extended precision (80 bits).

VAR
x, y, z :extended;
compsin, compcos : extended;
done : boolean;
sign, a, nodd: integer,

PROCEDURE getvalue;

This procedure queries the operator for an input value in degrees and S
converts degrees to radians.

BEGIN
writeln('Input value for sin/cos in degrees. -109 to end');
write('> ');
readln(z); S
IF (z =-109) then
done := true;

z :- z * (pi / 180);
END;

PROCEDURE computesincos; ,

This procedure calls the predefined sine and cosine functions and
computes the sine and cosine of the input

BEGIN
compsin := sin(z); A
compcos := cos(z);

A-I
% %

S;,

0

END;

PROCEDURE reduce;

This procedure reduces the input to the required range for the CORDIC
algorithm

VAR
u : extended;
n, signarg : integer,

BEGIN
signarg := 1;
F (z< 0) THEN
signarg -1;

u (z / pi) + (signarg *0.5); P...
n trunc(u);
nodd:= n MOD2; -,
z := ((u - n) - (0.5 * signarg)) * pi;

END;

PROCEDURE compute;

This procedure uses the CORDIC algorithm to compute the sine and
cosine of the reduced argument.

VAR 0
tempx, tempy, tempz extended; ,., 41

'., .
BEGIN
x:= 0.607252936;
y:=0;
twopower:= 1.0; 0
FOR a:= 0 TO 24 DO
BEGIN

IF (z < 0) THEN
sign:= 1

ELSE
sign := -1; 0

tempz z - (sign * arctan(twopower));
tempx x - (sign * y * twopower);
tempy y + (sign * x * twopower); ...

z tempz;
x tempx; 4.
y tempy; .
twopower:= twopower * 0.5;

END;

IF (nodd= I) THEN

A-2

% % %

BEGIN

Y:=I *y;
END;

END;V

PROCEDURE output;

This procedure prints the sine and cosine to the screen.

BEGIN
writeln('cordcoslcompcos ','cordsin/compsin');
writeln(x:2:8,' ',y: 2:8);
writeln(compcos:2:8,' .compsin:2:8); ~

END;

BEGIN
done :=false-,
WHILE (NOT done) DO
BEGIN

getvalue;
coniputesincos;
reduce;
compute;
IF (NOT done) THEN
output;,

END;
END.

A-3

Chebyshev Expansion for Sine and Cosine

PROGRAM chebsincos;

This program uses the Chebyshev algorithm as a function of x to
compute the sine and cosine of an input. The program performs range
reduction, so that any value can be input. The input is in degrees as
the program converts the input to radians. The program also computes
the sine and cosine by calling the predefined Instant Pascal functions
which are computed with extended precision (80 bits).

VAR
compsin, chebsin, compcos, chebcos, x extended;
done: boolean;
signsin, signcos : integer, S

PROCEDURE getvalue;

This procedure queries the user for values to find the
sine and cosine of. The input is in degrees.

BEGIN
writeln('Input value for sin/cos in degrees. -109 to end');
write('> ');
readln(x);
IF (x =-109) then

done := true; •
x := x * (pi / 180);

END;

PROCEDURE computesincos;{V
This procedure computes the sine and cosine using the predefined 0
functions found in the language

BEGIN
compsin := sin(x);
compcos := cos(x); ' . -

END; S

PROCEDURE reduce; '.

This procedure reduces the input to the range required by the
Chebyshev processor. The sign of the output is also determined.

VAR
u, fract : extended;
n, y : integer.BEGIN '""

A-4
°* 5%

• "'%

• '_" e ,' .' ,' # .,. " -. .,-, .- - .. ,,". ."", '-"-"''' .- .- .-. '. ". , z .- .- . ". .- ."" .- .- -" .- .- .'. ", """.'. .- ." "0 .

u: xi pi;
n := anc(u);
fract: u -n;
x :=(2 *fract);
Y:= nMOD 2;
signsin: 1;
signcos:= 1;
IF ((y=O0) AND (x > 1.0) THEN

signcos: -1;
]IF ((y = 1) AND (x <= 1.0) THEN
signcos -;

IF (y= 1) THEN
signsin: -1;

END;
0

PROCEDURE compute;

This procedure uses the Chebyshev polynomials to compute the
sine and cosine of the reduced argument.

VAR
answer],. answer2: extended;

PROCEDURE comnputechebcos;
VAR -

aO, a2, a4, a6, a8 :extended;
x2, x4, x6, x8 :extended;

BEGIN O
a0 0.99999995 327;
a2 -1.23369820792;
a4 =0.25365071056;
a6: -0.02081057280;
a8 :=0.00085816320;
x2: x * x
x4 :=x2 *x2
x6: x4 *x2
x8 :=x6 *x2

answerl :=aO + (a2*x2)+(a4*x4)+(a6*x6)+(a8*x8);
END;

PROCEDURE computechebsin;
VAR

WO b2, K4 W6 b8 :extended;
x2, x4, x6, x8 :extended;

BEGIN
bO: 1.57079628998;
b2: -0.64596335960;
b4 := 0.07968847968;
b6 := -0.00467222656;

A-S

0e

NJ' ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~I NJ- wJ'.N'.I WKV~ wyv 6-v* I- fYWVL- -fV''4~ v ~VFV 'V

b8 0.000 15081984;
answer2~~~~~~~~~

x4(O +(2 x
) (4 x4 + b * 6 + b * 8

END;

BEGIN
IF (x > 1.0) THEN
BEGIN
x: x-1
computechebcos;
chebsin: answer 1 signsin;
coniputechebsin;
chebcos: answer2 *signcos;

END
ELSE

computechebcos;,
chebsin :=answer2 *signsin; -

chebcos: answerl *signcos;

END;
END;

PROCEDURE output;
e

This procedure prints the output to the screen.

BEGIN
writeln('chebcos/compcos ','chebsin/compsinV);
writeln(chebcos:2:8,' ',chebsin:2:8);
writeln(compcos:2:8,' ',compsin:2:8);

4

END;

BEGIN

Main program

.

doe: fase

WHILE (NOT done) DO .

P getvalue;
computesincos;
reduce;
compute;
IF (NOT done) THEN
output;

END;
END.

A-6

0

Chebyshev Expansion for Tangent

PROGRAM chebtangent;

This program uses the Chebyshev algorithm as a function of x to
compute the tangent of an input. The program performs range
reduction, so that any value can be input. The input is in degrees as
the program converts the input to radians. The program also computes
the tangent by calling the predefined Instant Pascal functions which ,

are computed with extended precision (80 bits). Since no function is .

available to compute the tangent directly, both the sine and cosine
are computed, and the tangent is equal to sine/cosine.

VAR
comptan, chebtan, compcos, compsin extended;
x, answertan, answercot: extended;
done: boolean;
sign :integer;

PROCEDURE getvalue;0

This procedure queries the user for an input in degrees.
Conversion to radians is done in this procedure.

BEGIN
wri teln('Input value for tangent in degrees. -109 to end');
write('>')
readln(x);
EF (x =-109) then
done := true;

x := x *(pi /180);
END;

PROCEDURE computetan;

The predefined sine and cosine functions are called to compute
the tangent of the input.

BEGIN
compsin :=sin(x);
compcos :=cos(x);
comptan :=compsin /compcos;

END;

PROCEDURE reduce;

Range reduction is performed in this procedure, including the
sign of the final answer.

A-7

VAR
u, fract: extended;
n, y : integer,

BEGIN
U := x / pi;
n := trunc(u);
fract := u - n; "
sign:= 1;
IF (y < 0) THEN

sign :=
x:= fract * sign;

END;

PROCEDURE compute; S

This procedure contains the procedures to compute the Chebyshev
tangent and cotangent functions. If the reduced argument is less than-"-':
(pi /4), the tangent function is called. Otherwise, the cotangent
function is called.

PROCEDURE computechebtan;
VAR

al, a3, a5, a7, a9, al l : extended;
x3, x., x7, x9, xl I : extended;

BEGIN S
al := 0.78539686786;
a3 :=0.16152638116;
a5 := 0.03957327280;
a7 := 0.01083740608;
a9 =0.00 112678144;
al I := 0.00153917440; 0
x3 := x * x * x;
x5 := x3 * x * x;
x7 := x5 * x * x;
x9 := x7 * x * x;
xl I := x9 * x *X;

answertan := (a l*x)+(a3*x3)+(a5*x5)+(a7*x7)+(a9*x9)+(a 11 *x 11);
END;

PROCEDURE computechebcot;
VAR
b0, b2, b4, b6, b8, blO : extended;
x2, x4, x6, x8, xlO: extended;

BEGIN
bO:= 1.27321935363; .

b2 := -0.26143595267;
b4 : -0.01173517139;

A-8

-A- -. - ..

...

b6:= 0.00001332237;
b8:= -0.00003841664;
blO:= -0.00000294400;
answercot:= bO + (b2*x2)+(b4*x4)+(b6*x6)+(b8*x8)+(blO*x10); %,
answercot:= answercot * (I/x);

END-,

BEGIN

Main body of compute

IF ((x <= 0.25) OR (x >= 0.75)) THEN
BEGIN

IF (x >= 0.75) THEN
BEGIN
x:= - x;*'
sign:= -1 * sign;

END;
x:= x * 4;
computechebtan;
chebtan answertan * sign; S
END

ELSE
BEGIN

F (x <= 0.5) THEN
x := 0.5 - x 0

ELSE
BEGIN
sign:= sign * -1; ,

x:= x - 0.5;
END

x:= x * 4;
computechebcot;
chebtan := answercot * signsin; -.

END;
END;

PROCEDURE output;

This procedure prints the output to the screen.

BEGIN
writeln('chebtan ','comptan');
writeln(chebtan:2:8,' ',comptan:2:8);

END;

Main procedure

A-9

-'Z,

"S <

BEGIN
done: false; -

WHILE (NOT done) DO
BEGIN
getvalue;
comnputetan;,
reduce;
compute;
IF (NOT done) THEN
output;

END; -

END.

A-10

-~~~
. .-- C

Chebyshev Expansion for Exponential

PROGRAM chebexp;

This prograrn uses the Chebyshev algorithm as a function of x to
compute the exponential of an input. The program performs range /
reduction, so that any value can be input. The program also computes
the exponential by calling the predefined Instant Pascal functions
which are computed with extended precision (80 bits).: .

VAR
compexp, chebexp, x extended;
done : boolean; . ,

n : integer;

PROCEDURE getvalue;

This procedure queries the user for an input.

BEGIN
writeln('lnput value for exponential. -109 to end');
write('>)
readln(x);
IF (x=-109) then
done :=true;

END;

PROCEDURE computeexp;

Ths procedure uses the predefined Pascal function to
compute the exponential of the input.

BEGIN ..

compexp :=exp(x);
END;

PROCEDURE reduce;

This procedure reduces the range of the input to that
acceptable for the Chebyshcv polynomial equations.

BEGIN
n := trunc(x);
x := x - n;

END;

PROCEDURE compute;

A-Il

This procedure consists of two subprocedures: one computes the
exponential of a positive input, the other computes the exponential
of a negative input. The main procedure multiplies the output of
the subprocedures by the exponential of the integer portion of the
reduce procedure. The exponential of the interger is performed by
the predefined function.

VAR
answer: extended;

PROCEDURE computeposexp;
VAR

a0, a2, a4, a6, a8 : extended;
x2, x4, x6, x8 : extended;

BEGIN
a0 : 0.99999995327;
a2 -1 .23369820792;
&4 =0.25365071056;
a6 :=-0.02081057280;
a8 :=0.00085816320; %-.

x2: x * x;
x4 := x2 *x2-. -

x6 := x4 *x2
x8 := x6 *x2

answer := aO + (a2*x2)+(a4*x4)+(a6*x6)+(a8*x8);
END;

PROCEDURE computenegexp,
VAR

bW b2,b4KbWb8 extended;
x.2, x4. x6. x8 : extended;

BEGIN
bO := 1.57079628998;
b2 :=-0.64596335960;
b4 :=0.07968847968; V
b6 := -0.00467222656;.
b8 := 0.000 15081984;
answer := (bO + (b2*x2)+(b4*x4)+(b6*x6)+(b8*x8));

END;

BEGIN

Main body of compute. 1.

IF (x >0.0) THEN
BEGIN
cotnputeposexp;
chebexp :=answerl *exp(n);

END

A-12

ELSE IV
BEGIN
computenegexp;
chebexp:= answer2 * exp(n); a

END; % %

E N D ; " .N ,

PROCEDURE output;

This procedure prints the output to the screen.

BEGIN
writeln('chebexp ','compcxp');
writeln(chebexp:2:8. compexp:2:8);

END;

BEGIN

Main procedure

done := false;
WHILE (NOT done) DO .

BEGIN
getvalue;
computeexp;
reduce;
compute; S
IF (NOT done) THEN
output;

END;
END.

%

A-13 '""

., '

-v,1 ',,,

.. %

Chebyshev Expansion for Arctangent -

PROGRAM chebartan; 0

This program uses the Chebyshev algorithm as a function of x to
compute the arctangent of an input. The program performs range
reduction, so that any value can be input. The program also computes
the arctangent by calling the predefined Instant Pascal functions
which are computed with extended precision (80 bits).

VAR ,.
compare, chebatn, x extended;

done, toobig : boolean;.
n : integer; •

PROCEDURE getvalue;

This procedure queries the user for an input.

BEGIN
writeln('Input value for arctangent. -109 to end');
write('> ');
readln(x);
IF (x =-109) then
done:= true;

END;

PROCEDURE computeatn;

This procedure computes the arctangent of the input using
the predefined Pascal function for arctangent.

BEGIN
compar arctan(x);

END;

PROCEDURE reduce;

This procedure reduces the input to a value that meets the -.
input requirements of the Chebyshev polynomial equation.
If the input is greater that 1, the reciprical of the input
is calculated.

BEGIN
toobig:= FALSE;
If (x > 1)THEN
BEGIN %IF$ "

toobig:= TRUE;

A-14 Se,

............................. o .. - . %
.-

x:= X;"

END; 1

END;

PROCEDURE compute;

This procedure computes the arctangent using the Chebyshev
polynomial equations. If the unreduced input is greater
than 1, then the output from the Chebyshev equations must be
subtracted from (pi/2).

VAR
answer: extended;

PROCEDURE computeatn;
VAR%

aO, a2, a4, a6, a8 :extended;
x.2, x4, x6, x8 :extended;

BEGIN
aO: 0.99999990304;
a2 -0.33332184597;0
a4 0.19961556588;
a6 -0.13751623066;
a8 0.07726269923;
x2: x * x;
x4: x2 *x2
x6: x4 *x2
x8 :=x6 * x2;

answer: x*(aO + (a2*x2)+(a4*x4)+(a6*x6)+(a8*x8));
END;

BEGIN

Main body of compute.

computeatn;
IF (toobig) TH-EN
chebatn (pi / 2) - answer

ELSE
chebam answer,

END;

PROCEDURE output;

This procedure prints the output to the screen.

BEGIN
writeln('chebatn ','compatn');
writeln(chebatn:2:8, compatn:2:8);

A-15

END; a'

BEGIN

Main body of program.

done: false;
WHILE (NOT done) DO
BEGIN
getvalue;
computeatn;
reduce;
compute;
IF (NOT done) TH-EN
output; 0

END;
END.

a.

A-16.

A? %

Chebyshev Expansion for Natural Logarithm ,.a

PROGRAM chebnatlog;

This program uses the Chebyshev algorithm as a function of x to
compute the natural logarithm of an input. The program does not
perform range reduction because access to individual bits is not
supported by this version of Pascal. Only values between 0.75 and 1.0 -
can be input. The program also computes the natural logarithm by
calling the predefined Instant Pascal functions which are computed %
with extended precision (80 bits). But the output of this program
can be used to manually compute the natural logarithm of values . a

not in the required range.1 0
VAR
compnatlog, chebnatlog, x : extended;
done: boolean;
n : integer;

PROCEDURE getvalue;

This procedure queries the user for input. .

BEGIN .
writeln('Input value for natural log. -109 to end'); ,write('>')

readln(x); - -
IF (x = -109) then
done := true;

IF ((x < 0.75) OR (x > 1.0)) THEN
BEGIN -.- ,
writeln('Input not in required range, 0.75 to 1.0.');
write('> ');
readln(x);
END;

END;

PROCEDURE computenatlog; S

This procedure uses the predefined function to compute
the natural logarithm of the input.

BEGIN .. ,
compnatlog := ln(x); •

END;

PROCEDURE reduce;

A-17

,, S,. .,

wi-M7777. IT'F*&W

0

This procedure performs range reduction so that the
natural logarithm of the input is computed, not the
natural logarithm of 1 + the input.

BEGIN
X 1X-

END;

PROCEDURE compute;

This procedure uses the Chebyshev polynomial equations
to compute the natural logarithm of the reduced input.

VAR
answer: extended;

PROCEDURE computenatlog;
VAR

AO a2, a4, a6, a8 :extended;
x2, x4, x6, x8 :extended;

BEGIN
aO: -0.00000000958;
al 0.99999686448;
a2 -0.50016647931;
a3 0.33005325226;
a4 -0.28021885649; .
a5 =0.06217418014;
x2:= x * x;
x3: x2 *x;

x4: x3 *x;

x5 :=x4 * x
x6 := x5 * x;
answer: aO + (al *x)+(a2*x2)+(a3*x3)+(a4*x4)+(a5*x5);0

END;

BEGIN
computenatlog;
chebnatlog :=answer,

END;

PROCEDURE output;

This procedure outputs the answers to the screen.

BEGIN
writeln('chebnatlog ','compnatlog');
writeln(chebnatlog:2:8, compnaflog:2:8);

END;

A-18

BEGIN

Body of main procedure.0

done :=false;
WHILE (NOT done) DO
BEGIN
getvalue;
comnputenatlog; -0
reduce;
compute-,
IF (NOT done) THEN
output;

END;
END. 0

0

A-19

0

-'C.7

Bibliography

1 Balanis, Constantine A. Antenna Theory. New York: Harper & Row, Publishers, Inc., 1982.

2. Cosnard, M. and others. "The FELIN Arithmetic Coprocessor Chip," Proceedings on the Eighth
Symposium on Computer Arithmetic. 107-112. Washington: IEEE, 1987.

3. Dagget, D. H. "Decimal-Binary Conversions in CORDIC," IRE Transactions on Electronic
Computers, EC-9: 335-339 (September 1959).

4. Fandrianto, Jan. "Algorithm for High Speed Shared Radix 4 Division and Radix 4 Square-root,"
Proceedings on the Eighth Symposium on Computer Arithmetic. 73-79. Washington: IEEE,
1987.

5. Fox, L. and I. B. Parker. Chebyshev Polynomials in Numerical Anaylsis. London: Oxford
University Press, 1968.

6. Gallagher, David. Rapid Prototyping of Application Specific Processors. MS Thesis,
AFIT/GE/ENG/87D-19. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB, OH, December 1987.

7. Hoyt, 1 st Lt Brian A. Digital Algorithm Specification for the VLSI Implementation of the Elec-
tromagnetic Field of an Arbitray Current Source. MS Thesis, AFIT/GE/ENG/86D-18. School
of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH, December
1986. 0

8. Hwang, Kai and Faye A. Briggs. Computer Architecture and Parallel Processing. New York: .- .
McGraw-Hill, Inc., 1984.

9. Hwang, Kai and others. "Evaluating Elementary Functions with Chebyshev Polynomials on
Pipeline Nets," Proceedings on the Eighth Symposium on Computer Arithmetic. 121-128. •
Washington: IEEE, 1987.

10 IEEE Standard 754 for Binary Floating-Point Arithmetic. New York: IEEE Press, 1985.

11. Jones, Capt Lawrence E. Algorithm Definition for the VLSI Design Implementation of the Elec-
tromagnetic Radiation Integral. MS Thesis, AFIT/GE/ENG/85-23. School of Engineering, Air •
Force Institute of Technology (AU), Wright-Patterson AFB, OH, December 1985.

12. Lyustemik, L. A. and others. Handbook for Computing Elementary Functions. Oxford: Per- " "," ""
gamon Press, 1965.

13. Steer, D. G. and S. R. Penstone. "Digital Hardware for Sine-Cosine Function," IEEE Transac- 0
tions on Computers, C-26: 1283-1286 (December 1977).

-4 Strass, Capt Jack L. Architectural Implications of a Parallel Computational Approach to the
Vector Wave Equation. MS Thesis, AFIT/GE/ENG/87M-5. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH, May 1987.

BIB-1
'%0%

0

1.Voider, Jack E. "The CORDIC Trigonometric Computing Technique," IRE Transactions on
Electronic Computers, EC-8: 330-334 (August 1959).

-Z

eJ .

% r .

BIB'p

Vita

Captain Mickey J. Bailey was born on September 2. 1956 in Dansville, New York. He

graduated from Keshequa Central School in 1974 and attended Houghton College for two

years prior to enlisting in the Air Force. As an enlisted member he performed duties in the

6453X career field (Inventory Management Specialist). He was accepted into the airman

Education and Commissioning Program in 1980 and graduated from the University of South

Carolina in 1982 with a BSEE. After receiving a commission through the Officiers Training

School, he was assigned to the Strategic Communications Directorate at the Electronic Sys- ,...-,

tems Division, Hanscom AFB, Massachusettes where he served as both the Chief Project

Engineer and Deputy Program Manager for the Aircraft Alerting Communications EMP

Upgrade Program. He entered the School of Engineering at the Air Force Institute of Tech-

nology, Wright-Patterson AFB, Ohio in May 1986.

Permanent Address: 9939 Oakland Street

Dalton, NY 14836 S

'... ./.-'N

Vita-I - '
% %,,

- A '*

UNCLASSIFIED , ,/, ; :-
SECURITY CLASSIFICATION OF THIS PAGE ,

Form ApprovedREPORT DOCUMENTATION PAGE oMB No 0704-0188*we%_

la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS %*, *f

UNCLASS IF I ED ._._..,,..
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release:
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GE/ENG/87D-3
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION '

(If applicable)

School of Engineering AFIT/ENG "..'__..
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology
Wrioht-Patterson AFB, OH 45433-6583

&a. NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ,,.%,
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO

11. TITLE (Include Security Classification)
HIGH SPEED TRANSCENDENTAL ELEMENTARY FUNCTION ARCHITECTURE IN SUPPORT OF THE
VECTOR WAVE EOUATION (VWE)

12. PERSONAL AUTHOR(S)

Mickey J. Bailey, B.S., Captain, USAF
13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNT ,

MS Thesis FROM TO 1987 December 91 ?
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FELD GROUP SUB-GROUP CORDIC Algorithm, Chebyshev Polynomials,
12 01
12 03 Range Reduction, Pipelining

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Thesis Chairman: Joseph DeGroat, Major, USAF

Au I

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION 0
M UNCLASSIFIEDUNLIMITED 0 SAME AS RPT C DTIC USERS UNCLASS IF IED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL -

Joseph DeGroat Ma 'or USAF 513] 255-5633 AFIT/ENG %
DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICAT!ON OF THIS PAGE % %

UNCLASS IF IED

In support of a Very High Speed Integrated Circuit (VHSIC) class processor
for computation of a set of equations known as the Vector Wave Equations (VWE),

certain elementary fuctions including sine, cosine, and division are required. These S
elementary functions are the bottlenecks in the VWE processor. Floating point
multipliers and adders comprise the remainder of the pipeline stages in the VWE
processor.

To speed up the computation of the elementary functions, pipelining within
the functions is considered. To compute sine, cosine, and division, the CORDIC
algorithm is presented. Another method for computation of sine and cosine is the
expansion of the Chebyshev polynominals.

The equations for the CORDIC processor are recursive and the resulting
hardware is very simple, consisting of three adders, three shifters, and lookup table
for some of the coefficients. The shifters replace the multiplies, because in binary, i
right shifts is the same as multiplying by 2'.

The expansion of the Chebyshev polynominals can be used to compute other
trigonometric functions as well as the exponential and logarithmic functions. The
expansion of the Chebyshev polynominals can be used as a mathematic coprocessor.
From these equations, a pipelined architecture can be realized that results in very
fast computation times. The transformation of these equations as a function of z
instead of the Chebyshev polynominals produces an architecture which requires less
hardware, resulting in even faster computation times.

J.

.- .9..

'9.*.

.•.S.•

%..

S,-:

*, ""-[. ",-'.

* S

. " *- .. , ' '". " . " ,,*,_ .

- ' :, J P p.-

0 0

* 0

* 0

o o
, ",...-..'..

,',, '. -'% %, -. pa

(-I

.. p.- .,-,:

* 0

'/-.~ ~ .A.. "./I€
4

.. J1 .,,

" I UI N 1 U i l U i -- - U . . . U U I U IU U -- U " I U" S I S
,% • '% ' " ! . " % . '% , . r . '% '% . % % ' . . '% % ,, . , .. '* % . %. . . P P%, - . p % - p - "

